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CS 4641 — Project 4 Markov Decision Processes

1. Introduction

| chose to solve the Grid World as the MDP problem. In this problem, there is a grid
where one space is the goal state. The search agent mist traverse multiple states while
avoiding walls, to reach the goal state. It resembles PAC-MAN closely with the main
difference being that there is only one goal state (as opposed to hundreds of foods) and
there are no adversarial elements other than the walls. The probability of the agent
making the desired move is not 100%. Some amount of randomness is added, that
changes this probability of movement.

Although simple, this MDP can be extended to many applications that rely on techniques
of solving mazes. An example can be seen with robots that move in factories and
warehouses or even an at-home Roomba. The terrain that the vacuum cleaner/robot has to
move on is filled with obstacles like walls, tables, chairs etc (similar to the walls in our
maze). Additionally, there are several times when the robot may not actually make it’s
intended move (say moving right instead of front) due to technical glitches. This is
represented through the probabilistic action of moving in the maze. Hence the maze
problem effectively captures real world problems and allows us to analyze algorithms
that potentially apply to these problems.

Autonomous/Self driving cars is another application to which these maze problems can
be applied to. In “very simple” words, the goal of an autonomous car is to reach from
point A to point B (start to goal state) while avoiding obstacles such as (buildings etc).
Though, there is one very important assumption that I am making here: the world I’'m
talking about is stationary (buildings stay where they are and people are not moving)



To evaluate the performance of policy iteration, value iteration and Q learning (the
reinforcement learning algorithm chosen), they will be applied these two mazes. It has a
large number of possible states and walls strategically placed to be able to evaluate the
three algorithms sufficiently. The larger maze has a very large state space and is more
complex than the smaller maze. Hence, it will be a useful and interesting comparison to
see how the algorithms perform on these two problems.

When evaluating the algorithms, different values of PJOG were tested. Here PJOG
indicates the probability of the agent not moving in the direction of his desired action. So,
the probability that the agent will actually take his intended action is 1-PJOG. The
number of iterations required for convergence and the time taken to converge was noted
for each experiment.

2. Value Iteration and Policy Iteration

Large Maze
Value lteration Policy Iteration
PJOG | Iterations | time (ms) | Iterations | time (ms)

0.01 85 1244 18 12908
0.1 108 1580 14 6509
0.3 181 2586 11 7656
0.6 855 12634 10 13550
0.9 985 14690




Small Maze
Value Iteration Policy Iteration
PJOG | Iterations | time (ms) | Iterations | time (ms)

0.01 18 20 10 46
0.1 28 22 6 38
0.3 61 24 7 25
0.6 304 108 6 21
0.9 480 125 7 17

The value iteration algorithm in a nutshell helps us find the utility of each state where
utility is defined as the reward for being in that particular state plus the rewards that we
are going to get from that point on (capturing the rewards and utilities for the future
states/actions to be taken). While the utility iteration algorithm gives us the optimal utility
for each state, the policy iteration algorithm helps us to map a particular state to a desired
action.

Fist, for value iteration, a conservative value of 0.3 was chosen as the randomness factor
(PJOG) and a penalty of 50 was assigned for crashing into the walls. As expected, Value
Iteration prefers paths without any walls assigning the states to the north of the goal state
much lower penalty values than the states on its west and south. This is most likely due to
the algorithm trying to avoid the walls and wall penalty, considering the randomness
factor. This case took 2586ms total to run and completed in 181 steps.

When the randomness factor is reduced to 0.01, we see that the algorithm favors the paths
through the walls much more than the previous case. This can be attributed to the fact
that low randomness almost always guarantees the next state to be the desired one. This
reduces the penalty that could have been incurred when you hit the wall and thus Value
Iteration is able to give much lower costs to the states that are closer to walls. It is also
worth noting that with PJOG values Value Iteration converges much faster probably
because the algorithm doesn’t have to spend too much time exploring the non-optimal
states. Value Iteration for this case converged in 19 steps and 13ms, considerably faster
than first case.

When the PJOG factor is increased to 0.9, which means that 90 percent of the time the
next state is not the intended state. In this case we see expected behavior, the algorithm
brutally punishes any states that are remotely close to the walls and gives much smaller
rewards for being close to the goal state. It is easy to conclude that with high randomness
severely affects the algorithm leading to Value Iteration aggressively punishing most
states. It is also worth noticing that high variability significantly impacted the runtime of
the algorithm as Value Iteration converged after 1220 steps or 665ms, almost 10 times
the regular case.



It is evident from the table that policy iteration takes much fewer iterations to converge
when compared to value iteration. This is true for both the mazes. This can be explained
from the fact that the policy iteration algorithm terminates after an optimal policy has
been achieved (i.e further iterations do not change the policies- although the utility values
may not yet be optimal). Value iteration on the other hand terminates only when the
difference between the utilities of succeeding iterations is below a certain tolerance.
Thus, even though the correct ordering of actions may be achieved earlier, the utility of
each state could still further be improved. In other words, even though the actions taken
by an agent in a particular state may not change, the utility value for that state would
continue to improve (until convergence). Thus, more iterations are required for value
iterations.

Now although the number of value iterations required to converge are much more than
the number of policy iterations, the total time taken by value iterations is much less
compared to the time taken by the policy iterations. This shows that the policy iteration
update is more expensive than the value iteration update. It can be attributed to the fact
that for value iteration we are only updating value/numbers for a particular state (based
on reward of current state and utility of neighbor states). But for policy iterations we are
actually calculating the utility of a particular state based on a given policy and then using
it to improve the current policy/state action (by evaluating the argument max of all the
possible actions for a given state that maximizes the expected utility calculated in the
previous timestamp). In simpler terms it is doing policy evaluation and improvement.
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Policy Iteration with PJOG = 0.3 Value Iteration with PJOG = 0.3

When comparing policy iteration and value iteration or a conservative PJOG value, the
results are quite consistent. the algorithms seems to be a little conservative and prefer the



path that goes around the walls even when there is a shorter path that cuts through a
walled corridor. This behavior can be attributed to the randomization factor which makes

it riskier to traverse through the states closer to the walls as the agent is more likely to
lose points there.

[10X 10 Maze, Wall Penalty:50] | Policy Iteration -- Converged after 10 steps!! TimeTaken: 46ms. 116X 10 Maze, Wall Penaltyz5o] | i pat 20ms

Policy Iteration with PJOG = 0.01 Value Iteration with PJOG = 0.01
With a reduced randomness factor (PJOG = 0.01), we can see the algorithm come up with
very different policies as compared to the previous test. The algorithm now punishes
paths that are indirect and now encourages direct paths even if they go through the walled
corridor. This finding is consistent with the Value Iteration test results and this can also
be attributed to the fact that low randomness makes the next optimal state much more
reliable enabling algorithm to pick out certain riskier paths.
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Value Iteration with PJOG = 0.9

With a very high randomness value (PJOG = 0.9), Policy iteration attaches very high
costs with all the states that are 2 steps away from the goal state. This finding is also
consistent with the previous Values Iteration finding and intuitively makes sense. A
PJOG = 0.9 value means that the next state is almost guaranteed to be suboptimal and
thus makes the algorithm perform poorly. Interestingly, with a high randomness factor
Policy iteration converged in 10 steps with results that are similar to the Value Iteration.
Thus, it can be concluded that for relatively noisy environments it would more
advantageous to use Policy Iteration to get a faster result in less steps.

We can also see from these side-by-side comparisons, that while the results and very
similar for the PJOG = 0.3 case, for both algorithms, the results vary more for the PJOG
= 0.9 case. (can be seen by the difference in color gradients/concentrations).

This analysis holds true for the larger maze sizes. It is just harder to analyze due to the
size and complexity.
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Policy Iteration with PJOG = 0.3

145X 45 Maze, Wall | Value Iteration -- after 181 steps!! 2586ms
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Value Iteration with PJOG = 0.3




2.3 Q Learning

Epsilon = 0.8, Cycles = 25,000 Epsilon = 0.8, Cycles = 250,000

For this part of the assignment we are comparing a reinforcement learning algorithm to
the previously used value and policy iteration algorithms. The reinforcement learning
algorithm that | chose was the Q-learning algorithm. While performing the value and
policy iteration algorithms we assumed that we had access to the transition model and
rewards for a particular state. However, in the real world we may not have to such
information. Reinforcement algorithms like Q-learning make use of this available



information to come up with solutions which may or may not be optimal but more
accurately represent real word situations.

Learning rate and epsilon are two important parameters that are used in the Q-learning
algorithm. Learning rate represents how much of the old data we use along with the new
data to estimate the “Q-value” for a particular state. We start with a high learning rate
(learning more from new data) and then gradually decrease the learning rate over time
(relying/believing more in past data). Epsilon could be viewed as the measurement of
randomness (similar to simulated annealing) where we tend to use the more optimal
solution most times (with a probability of 1-epsilon) but other times (probability epsilon)
we may use a suboptimal solution. This is done to avoid situations like being stuck in
some local minima. It also brings forth the concept of exploration vs exploitation which
is an important dilemma for Q-learning and most other reinforcement algorithms. While
performing the Q-learning algorithm experiments different values of epsilon were used to
compare and contrast results. The learning rate was 0.7 and the PJOG value was kept at
0.3 to keep an even basis for comparison with previous results.

It is interesting to note the results obtained after running the Q-learning algorithm on the
problem sets above. The first thing to note is that none of the results (for both problems)
matched that of value or policy iteration. This is because we have limited the number of
iterations that are performed for Q-Learning. For Q-learning to return an optimal solution
the states have to be visited an infinite number of times. It should be noted that the results
for the smaller maze are however more similar to the value/policy iteration results than
the Big maze results. This can be attributed to the fact that the smaller maze is much
simpler (fewer states and less obstacles), and thus is easier for the Q-Learning algorithm
to map the given transitions to policies. Another observation, was that for both the small
and the big maze the Q-Learning algorithm took much longer to execute than the value
and policy iteration. This follows from the fact that we are not given a model and the
reward for each state but only transitions to work with. We need to visit each state
multiple times (well infinite for optimal) to obtain a good expected Q value for each state
and then chose the appropriate action for each state based on these Q values.

Q Learning also took the most time out of all three algorithms, and never managed to
converge to the optimal policy (although it did come close). The 1000 iterations run took
about 2 sec, which puts its time at about 2ms per cycle. The time taken each step is
significantly lower because in this implementation each step is the time taken by the
agent to reach destination state from the starting state. Although Q Learning takes the
most iterations it does enable the agent to truly learn from its surroundings and past
mistakes and eventually reach the optimal policy. Which is a very impressive feat given
that this algorithm requires no domain knowledge.



