
Abhay Dalmia

April 22, 2018

CS 4641 – Project 4 Markov Decision Processes

1. Introduction

I chose to solve the Grid World as the MDP problem. In this problem, there is a grid

where one space is the goal state. The search agent mist traverse multiple states while

avoiding walls, to reach the goal state. It resembles PAC-MAN closely with the main

difference being that there is only one goal state (as opposed to hundreds of foods) and

there are no adversarial elements other than the walls. The probability of the agent

making the desired move is not 100%. Some amount of randomness is added, that

changes this probability of movement.

Although simple, this MDP can be extended to many applications that rely on techniques

of solving mazes. An example can be seen with robots that move in factories and

warehouses or even an at-home Roomba. The terrain that the vacuum cleaner/robot has to

move on is filled with obstacles like walls, tables, chairs etc (similar to the walls in our

maze). Additionally, there are several times when the robot may not actually make it’s

intended move (say moving right instead of front) due to technical glitches. This is

represented through the probabilistic action of moving in the maze. Hence the maze

problem effectively captures real world problems and allows us to analyze algorithms

that potentially apply to these problems.

Autonomous/Self driving cars is another application to which these maze problems can

be applied to. In “very simple” words, the goal of an autonomous car is to reach from

point A to point B (start to goal state) while avoiding obstacles such as (buildings etc).

Though, there is one very important assumption that I am making here: the world I’m

talking about is stationary (buildings stay where they are and people are not moving)

To evaluate the performance of policy iteration, value iteration and Q learning (the

reinforcement learning algorithm chosen), they will be applied these two mazes. It has a

large number of possible states and walls strategically placed to be able to evaluate the

three algorithms sufficiently. The larger maze has a very large state space and is more

complex than the smaller maze. Hence, it will be a useful and interesting comparison to

see how the algorithms perform on these two problems.

When evaluating the algorithms, different values of PJOG were tested. Here PJOG

indicates the probability of the agent not moving in the direction of his desired action. So,

the probability that the agent will actually take his intended action is 1-PJOG. The

number of iterations required for convergence and the time taken to converge was noted

for each experiment.

2. Value Iteration and Policy Iteration

Large Maze

 Value Iteration Policy Iteration

PJOG Iterations time (ms) Iterations time (ms)

0.01 85 1244 18 12908

0.1 108 1580 14 6509

0.3 181 2586 11 7656

0.6 855 12634 10 13550

0.9 985 14690

Small Maze

 Value Iteration Policy Iteration

PJOG Iterations time (ms) Iterations time (ms)

0.01 18 20 10 46

0.1 28 22 6 38

0.3 61 24 7 25

0.6 304 108 6 21

0.9 480 125 7 17

The value iteration algorithm in a nutshell helps us find the utility of each state where

utility is defined as the reward for being in that particular state plus the rewards that we

are going to get from that point on (capturing the rewards and utilities for the future

states/actions to be taken). While the utility iteration algorithm gives us the optimal utility

for each state, the policy iteration algorithm helps us to map a particular state to a desired

action.

Fist, for value iteration, a conservative value of 0.3 was chosen as the randomness factor

(PJOG) and a penalty of 50 was assigned for crashing into the walls. As expected, Value

Iteration prefers paths without any walls assigning the states to the north of the goal state

much lower penalty values than the states on its west and south. This is most likely due to

the algorithm trying to avoid the walls and wall penalty, considering the randomness

factor. This case took 2586ms total to run and completed in 181 steps.

When the randomness factor is reduced to 0.01, we see that the algorithm favors the paths

through the walls much more than the previous case. This can be attributed to the fact

that low randomness almost always guarantees the next state to be the desired one. This

reduces the penalty that could have been incurred when you hit the wall and thus Value

Iteration is able to give much lower costs to the states that are closer to walls. It is also

worth noting that with PJOG values Value Iteration converges much faster probably

because the algorithm doesn’t have to spend too much time exploring the non-optimal

states. Value Iteration for this case converged in 19 steps and 13ms, considerably faster

than first case.

When the PJOG factor is increased to 0.9, which means that 90 percent of the time the

next state is not the intended state. In this case we see expected behavior, the algorithm

brutally punishes any states that are remotely close to the walls and gives much smaller

rewards for being close to the goal state. It is easy to conclude that with high randomness

severely affects the algorithm leading to Value Iteration aggressively punishing most

states. It is also worth noticing that high variability significantly impacted the runtime of

the algorithm as Value Iteration converged after 1220 steps or 665ms, almost 10 times

the regular case.

It is evident from the table that policy iteration takes much fewer iterations to converge

when compared to value iteration. This is true for both the mazes. This can be explained

from the fact that the policy iteration algorithm terminates after an optimal policy has

been achieved (i.e further iterations do not change the policies- although the utility values

may not yet be optimal). Value iteration on the other hand terminates only when the

difference between the utilities of succeeding iterations is below a certain tolerance.

Thus, even though the correct ordering of actions may be achieved earlier, the utility of

each state could still further be improved. In other words, even though the actions taken

by an agent in a particular state may not change, the utility value for that state would

continue to improve (until convergence). Thus, more iterations are required for value

iterations.

Now although the number of value iterations required to converge are much more than

the number of policy iterations, the total time taken by value iterations is much less

compared to the time taken by the policy iterations. This shows that the policy iteration

update is more expensive than the value iteration update. It can be attributed to the fact

that for value iteration we are only updating value/numbers for a particular state (based

on reward of current state and utility of neighbor states). But for policy iterations we are

actually calculating the utility of a particular state based on a given policy and then using

it to improve the current policy/state action (by evaluating the argument max of all the

possible actions for a given state that maximizes the expected utility calculated in the

previous timestamp). In simpler terms it is doing policy evaluation and improvement.

Policy Iteration with PJOG = 0.3

Value Iteration with PJOG = 0.3

When comparing policy iteration and value iteration or a conservative PJOG value, the

results are quite consistent. the algorithms seems to be a little conservative and prefer the

path that goes around the walls even when there is a shorter path that cuts through a

walled corridor. This behavior can be attributed to the randomization factor which makes

it riskier to traverse through the states closer to the walls as the agent is more likely to

lose points there.

Policy Iteration with PJOG = 0.01

Value Iteration with PJOG = 0.01

With a reduced randomness factor (PJOG = 0.01), we can see the algorithm come up with

very different policies as compared to the previous test. The algorithm now punishes

paths that are indirect and now encourages direct paths even if they go through the walled

corridor. This finding is consistent with the Value Iteration test results and this can also

be attributed to the fact that low randomness makes the next optimal state much more

reliable enabling algorithm to pick out certain riskier paths.

Policy Iteration with PJOG = 0.9

Value Iteration with PJOG = 0.9

With a very high randomness value (PJOG = 0.9), Policy iteration attaches very high

costs with all the states that are 2 steps away from the goal state. This finding is also

consistent with the previous Values Iteration finding and intuitively makes sense. A

PJOG = 0.9 value means that the next state is almost guaranteed to be suboptimal and

thus makes the algorithm perform poorly. Interestingly, with a high randomness factor

Policy iteration converged in 10 steps with results that are similar to the Value Iteration.

Thus, it can be concluded that for relatively noisy environments it would more

advantageous to use Policy Iteration to get a faster result in less steps.

We can also see from these side-by-side comparisons, that while the results and very

similar for the PJOG = 0.3 case, for both algorithms, the results vary more for the PJOG

= 0.9 case. (can be seen by the difference in color gradients/concentrations).

This analysis holds true for the larger maze sizes. It is just harder to analyze due to the

size and complexity.

Policy Iteration with PJOG = 0.3

Value Iteration with PJOG = 0.3

2.3 Q Learning

Epsilon = 0.1, Cycles = 25,000

Epsilon = 0.4, Cycles = 25,000

Epsilon = 0.8, Cycles = 25,000

Epsilon = 0.8, Cycles = 250,000

For this part of the assignment we are comparing a reinforcement learning algorithm to

the previously used value and policy iteration algorithms. The reinforcement learning

algorithm that I chose was the Q-learning algorithm. While performing the value and

policy iteration algorithms we assumed that we had access to the transition model and

rewards for a particular state. However, in the real world we may not have to such

information. Reinforcement algorithms like Q-learning make use of this available

information to come up with solutions which may or may not be optimal but more

accurately represent real word situations.

Learning rate and epsilon are two important parameters that are used in the Q-learning

algorithm. Learning rate represents how much of the old data we use along with the new

data to estimate the “Q-value” for a particular state. We start with a high learning rate

(learning more from new data) and then gradually decrease the learning rate over time

(relying/believing more in past data). Epsilon could be viewed as the measurement of

randomness (similar to simulated annealing) where we tend to use the more optimal

solution most times (with a probability of 1-epsilon) but other times (probability epsilon)

we may use a suboptimal solution. This is done to avoid situations like being stuck in

some local minima. It also brings forth the concept of exploration vs exploitation which

is an important dilemma for Q-learning and most other reinforcement algorithms. While

performing the Q-learning algorithm experiments different values of epsilon were used to

compare and contrast results. The learning rate was 0.7 and the PJOG value was kept at

0.3 to keep an even basis for comparison with previous results.

It is interesting to note the results obtained after running the Q-learning algorithm on the

problem sets above. The first thing to note is that none of the results (for both problems)

matched that of value or policy iteration. This is because we have limited the number of

iterations that are performed for Q-Learning. For Q-learning to return an optimal solution

the states have to be visited an infinite number of times. It should be noted that the results

for the smaller maze are however more similar to the value/policy iteration results than

the Big maze results. This can be attributed to the fact that the smaller maze is much

simpler (fewer states and less obstacles), and thus is easier for the Q-Learning algorithm

to map the given transitions to policies. Another observation, was that for both the small

and the big maze the Q-Learning algorithm took much longer to execute than the value

and policy iteration. This follows from the fact that we are not given a model and the

reward for each state but only transitions to work with. We need to visit each state

multiple times (well infinite for optimal) to obtain a good expected Q value for each state

and then chose the appropriate action for each state based on these Q values.

Q Learning also took the most time out of all three algorithms, and never managed to

converge to the optimal policy (although it did come close). The 1000 iterations run took

about 2 sec, which puts its time at about 2ms per cycle. The time taken each step is

significantly lower because in this implementation each step is the time taken by the

agent to reach destination state from the starting state. Although Q Learning takes the

most iterations it does enable the agent to truly learn from its surroundings and past

mistakes and eventually reach the optimal policy. Which is a very impressive feat given

that this algorithm requires no domain knowledge.

