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CS 4641 – Project 4 Markov Decision Processes 
 

1. Introduction 
 

I chose to solve the Grid World as the MDP problem. In this problem, there is a grid 

where one space is the goal state. The search agent mist traverse multiple states while 

avoiding walls, to reach the goal state. It resembles PAC-MAN closely with the main 

difference being that there is only one goal state (as opposed to hundreds of foods) and 

there are no adversarial elements other than the walls. The probability of the agent 

making the desired move is not 100%. Some amount of randomness is added, that 

changes this probability of movement. 

 

Although simple, this MDP can be extended to many applications that rely on techniques 

of solving mazes. An example can be seen with robots that move in factories and 

warehouses or even an at-home Roomba. The terrain that the vacuum cleaner/robot has to 

move on is filled with obstacles like walls, tables, chairs etc (similar to the walls in our 

maze). Additionally, there are several times when the robot may not actually make it’s 

intended move (say moving right instead of front) due to technical glitches. This is 

represented through the probabilistic action of moving in the maze. Hence the maze 

problem effectively captures real world problems and allows us to analyze algorithms 

that potentially apply to these problems. 

 

Autonomous/Self driving cars is another application to which these maze problems can 

be applied to. In “very simple” words, the goal of an autonomous car is to reach from 

point A to point B (start to goal state) while avoiding obstacles such as (buildings etc). 

Though, there is one very important assumption that I am making here: the world I’m 

talking about is stationary (buildings stay where they are and people are not moving) 
 



 
 

To evaluate the performance of policy iteration, value iteration and Q learning (the 

reinforcement learning algorithm chosen), they will be applied these two mazes. It has a 

large number of possible states and walls strategically placed to be able to evaluate the 

three algorithms sufficiently. The larger maze has a very large state space and is more 

complex than the smaller maze. Hence, it will be a useful and interesting comparison to 

see how the algorithms perform on these two problems. 

 

When evaluating the algorithms, different values of PJOG were tested. Here PJOG 

indicates the probability of the agent not moving in the direction of his desired action. So, 

the probability that the agent will actually take his intended action is 1-PJOG. The 

number of iterations required for convergence and the time taken to converge was noted 

for each experiment. 

 

2. Value Iteration and Policy Iteration 
 

Large Maze 

  Value Iteration Policy Iteration 

PJOG Iterations time (ms) Iterations time (ms) 

0.01 85 1244 18 12908 

0.1 108 1580 14 6509 

0.3 181 2586 11 7656 

0.6 855 12634 10 13550 

0.9 985 14690     

 

 

 

 



Small Maze 

  Value Iteration Policy Iteration 

PJOG Iterations time (ms) Iterations time (ms) 

0.01 18 20 10 46 

0.1 28 22 6 38 

0.3 61 24 7 25 

0.6 304 108 6 21 

0.9 480 125 7 17 

 

The value iteration algorithm in a nutshell helps us find the utility of each state where 

utility is defined as the reward for being in that particular state plus the rewards that we 

are going to get from that point on (capturing the rewards and utilities for the future 

states/actions to be taken). While the utility iteration algorithm gives us the optimal utility 

for each state, the policy iteration algorithm helps us to map a particular state to a desired 

action. 

 

Fist, for value iteration, a conservative value of 0.3 was chosen as the randomness factor 

(PJOG) and a penalty of 50 was assigned for crashing into the walls. As expected, Value 

Iteration prefers paths without any walls assigning the states to the north of the goal state 

much lower penalty values than the states on its west and south. This is most likely due to 

the algorithm trying to avoid the walls and wall penalty, considering the randomness 

factor. This case took 2586ms total to run and completed in 181 steps. 

 

When the randomness factor is reduced to 0.01, we see that the algorithm favors the paths 

through the walls much more than the previous case. This can be attributed to the fact 

that low randomness almost always guarantees the next state to be the desired one. This 

reduces the penalty that could have been incurred when you hit the wall and thus Value 

Iteration is able to give much lower costs to the states that are closer to walls. It is also 

worth noting that with PJOG values Value Iteration converges much faster probably 

because the algorithm doesn’t have to spend too much time exploring the non-optimal 

states. Value Iteration for this case converged in 19 steps and 13ms, considerably faster 

than first case. 

 

When the PJOG factor is increased to 0.9, which means that 90 percent of the time the 

next state is not the intended state. In this case we see expected behavior, the algorithm 

brutally punishes any states that are remotely close to the walls and gives much smaller 

rewards for being close to the goal state. It is easy to conclude that with high randomness 

severely affects the algorithm leading to Value Iteration aggressively punishing most 

states. It is also worth noticing that high variability significantly impacted the runtime of 

the algorithm as Value Iteration converged after 1220 steps or 665ms, almost 10 times 

the regular case. 

 



It is evident from the table that policy iteration takes much fewer iterations to converge 

when compared to value iteration. This is true for both the mazes. This can be explained 

from the fact that the policy iteration algorithm terminates after an optimal policy has 

been achieved (i.e further iterations do not change the policies- although the utility values 

may not yet be optimal). Value iteration on the other hand terminates only when the 

difference between the utilities of succeeding iterations is below a certain tolerance. 

Thus, even though the correct ordering of actions may be achieved earlier, the utility of 

each state could still further be improved. In other words, even though the actions taken 

by an agent in a particular state may not change, the utility value for that state would 

continue to improve (until convergence). Thus, more iterations are required for value 

iterations. 

 

Now although the number of value iterations required to converge are much more than 

the number of policy iterations, the total time taken by value iterations is much less 

compared to the time taken by the policy iterations. This shows that the policy iteration 

update is more expensive than the value iteration update. It can be attributed to the fact 

that for value iteration we are only updating value/numbers for a particular state (based 

on reward of current state and utility of neighbor states). But for policy iterations we are 

actually calculating the utility of a particular state based on a given policy and then using 

it to improve the current policy/state action (by evaluating the argument max of all the 

possible actions for a given state that maximizes the expected utility calculated in the 

previous timestamp). In simpler terms it is doing policy evaluation and improvement. 

 

 
Policy Iteration with PJOG = 0.3 

 
Value Iteration with PJOG = 0.3 

 

When comparing policy iteration and value iteration or a conservative PJOG value, the 

results are quite consistent. the algorithms seems to be a little conservative and prefer the 



path that goes around the walls even when there is a shorter path that cuts through a 

walled corridor. This behavior can be attributed to the randomization factor which makes 

it riskier to traverse through the states closer to the walls as the agent is more likely to 

lose points there. 

 

 
Policy Iteration with PJOG = 0.01 

 
Value Iteration with PJOG = 0.01 

 

With a reduced randomness factor (PJOG = 0.01), we can see the algorithm come up with 

very different policies as compared to the previous test. The algorithm now punishes 

paths that are indirect and now encourages direct paths even if they go through the walled 

corridor. This finding is consistent with the Value Iteration test results and this can also 

be attributed to the fact that low randomness makes the next optimal state much more 

reliable enabling algorithm to pick out certain riskier paths. 

 



 
Policy Iteration with PJOG = 0.9 

 
Value Iteration with PJOG = 0.9 

 
With a very high randomness value (PJOG = 0.9), Policy iteration attaches very high 

costs with all the states that are 2 steps away from the goal state. This finding is also 

consistent with the previous Values Iteration finding and intuitively makes sense. A 

PJOG = 0.9 value means that the next state is almost guaranteed to be suboptimal and 

thus makes the algorithm perform poorly. Interestingly, with a high randomness factor 

Policy iteration converged in 10 steps with results that are similar to the Value Iteration. 

Thus, it can be concluded that for relatively noisy environments it would more 

advantageous to use Policy Iteration to get a faster result in less steps. 

 

We can also see from these side-by-side comparisons, that while the results and very 

similar for the PJOG = 0.3 case, for both algorithms, the results vary more for the PJOG 

= 0.9 case. (can be seen by the difference in color gradients/concentrations). 

 

This analysis holds true for the larger maze sizes. It is just harder to analyze due to the 

size and complexity.  



 
Policy Iteration with PJOG = 0.3 

 

 
Value Iteration with PJOG = 0.3 



2.3 Q Learning 
 

 
Epsilon = 0.1, Cycles = 25,000 

 

 
Epsilon = 0.4, Cycles = 25,000 

 
Epsilon = 0.8, Cycles = 25,000 

 
Epsilon = 0.8, Cycles = 250,000 

 
For this part of the assignment we are comparing a reinforcement learning algorithm to 

the previously used value and policy iteration algorithms. The reinforcement learning 

algorithm that I chose was the Q-learning algorithm. While performing the value and 

policy iteration algorithms we assumed that we had access to the transition model and 

rewards for a particular state. However, in the real world we may not have to such 

information. Reinforcement algorithms like Q-learning make use of this available 



information to come up with solutions which may or may not be optimal but more 

accurately represent real word situations. 
 

Learning rate and epsilon are two important parameters that are used in the Q-learning 

algorithm. Learning rate represents how much of the old data we use along with the new 

data to estimate the “Q-value” for a particular state. We start with a high learning rate 

(learning more from new data) and then gradually decrease the learning rate over time 

(relying/believing more in past data). Epsilon could be viewed as the measurement of 

randomness (similar to simulated annealing) where we tend to use the more optimal 

solution most times (with a probability of 1-epsilon) but other times (probability epsilon) 

we may use a suboptimal solution. This is done to avoid situations like being stuck in 

some local minima. It also brings forth the concept of exploration vs exploitation which 

is an important dilemma for Q-learning and most other reinforcement algorithms. While 

performing the Q-learning algorithm experiments different values of epsilon were used to 

compare and contrast results. The learning rate was 0.7 and the PJOG value was kept at 

0.3 to keep an even basis for comparison with previous results. 

 

It is interesting to note the results obtained after running the Q-learning algorithm on the 

problem sets above. The first thing to note is that none of the results (for both problems) 

matched that of value or policy iteration. This is because we have limited the number of 

iterations that are performed for Q-Learning. For Q-learning to return an optimal solution 

the states have to be visited an infinite number of times. It should be noted that the results 

for the smaller maze are however more similar to the value/policy iteration results than 

the Big maze results. This can be attributed to the fact that the smaller maze is much 

simpler (fewer states and less obstacles), and thus is easier for the Q-Learning algorithm 

to map the given transitions to policies. Another observation, was that for both the small 

and the big maze the Q-Learning algorithm took much longer to execute than the value 

and policy iteration. This follows from the fact that we are not given a model and the 

reward for each state but only transitions to work with. We need to visit each state 

multiple times (well infinite for optimal) to obtain a good expected Q value for each state 

and then chose the appropriate action for each state based on these Q values. 

 

Q Learning also took the most time out of all three algorithms, and never managed to 

converge to the optimal policy (although it did come close). The 1000 iterations run took 

about 2 sec, which puts its time at about 2ms per cycle. The time taken each step is 

significantly lower because in this implementation each step is the time taken by the 

agent to reach destination state from the starting state. Although Q Learning takes the 

most iterations it does enable the agent to truly learn from its surroundings and past 

mistakes and eventually reach the optimal policy. Which is a very impressive feat given 

that this algorithm requires no domain knowledge. 
 
 


