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Introduction	
	
The	rate	of	occurrences	is	one	of	the	most	important	practical	aspects	of	the	use	
of	mathematics	in	the	real	world.	Calculus	defines	this	very	idea,	that	the	rate	of	
change,	whether	increase	or	decrease	of	anything	in	this	world	can	be	modeled	
with	the	correct	parameters.	
	
I	was	first	intrigued,	when	I	learnt	Calculus,	by	its	ability	to	model	and	more	
importantly	predict	situations	and	forecast	the	progression	of	such	situations.	
Exponential	and	Logistic	Growth,	in	this	context,	is	related	to	the	change	of	rate	
of	something	occurring,	normally	analogous	to	the	population	growth	model	or	
the	disease	growth	model.	Logistic	Growth	can	model	the	population	growth	of	
the	world.	
	
In	this	investigation,	an	exponential	and	logistic	model	for	the	spread	of	a	disease	
or	rumor	mathematically	will,	be	derived,	and	the	more	appropriate	form	will	be	
chosen.	And	then,	the	reliability	and	the	accuracy	will	be	tested,	by	creating	an	
actual	model	of	spread	of	a	rumor/disease	by	use	of	both,	a	computer	simulation	
and	real-life	event.	Hence,	the	principle	of	logistic	growth	will	be	evaluated	in	its	
usefulness	for	real-life	situations.	
	
Note:	All	graphs	made	and	conclusions	drawn	are	from	the	data	gathered	
through	the	Java	Program.	The	exact	data	can	be	obtained	by	inputting	the	
conditions	stated	into	the	program	reproduced	in	Appendix	1.	
	

Exponential	Model	
	
The	exponential	model	for	growth/decay	assumes	that	the	rate	of	increase	and	
decrease	is	constant	as	time	progresses.	This	is	represented	through	the	
equation	–		

𝑑𝑦
𝑑𝑡 = 𝑘 ∙ 𝑦	

	
In	this	equation,	the	rate	of	change	of	a	variable	𝑦	with	respect	to	time	is	
controlled	by	a	constant	𝑘,	which	dictates	the	rate	at	which	𝑦	increases	or	
decreases	with	time.	This	equation	is	further	integrated	by	separation	of	
variables	-		
	

1
𝑦 𝑑𝑦 = 𝑘 ∙ 𝑑𝑡	

	
Both	sides	of	this	equation	are	then	integrated,	so	that	a	general	equation	that	
models	exponential	growth	can	be	obtained.	By	integrating	both	sides	–		
	

1
𝑦 𝑑𝑦 = 𝑘 ∙ 𝑑𝑡	



	 	 Abhay	Dalmia	

	 3	

	
ln 𝑦 = 𝑘𝑡 + C	

This	equation,	hence,	models	the	variable	𝑦,	which	could	be	seen	as	population	
or	the	spread	of	a	disease	with	time,	and	how	this	variable,	increases	in	the	case	
of	population,	with	time.	This	equation	is	further	simplified	to	–		
	

log. 𝑦 = 𝑘𝑡 + C	
	

𝑦 = 𝑒012C = 𝑒01 ∙ 𝑒C	
	

𝑦(𝑡) = C𝑒01 	
	
The	value	of	the	constant	C	is	found	by	using	the	initial	condition	that	logically	
follows	that	at	𝑡 = 0,	when	the	rate	of	increase/decrease	has	not	started,	the	
value	of	𝑦	will	result	in	the	initial	number	of	occurrences,	in	this	case	–		
	

𝑦(0) = 𝑦6	
	
Hence,	by	plugging	in	the	value	for	time	and	the	resulting	value	of	𝑦,	the	final	
equation	that	models	this	principle	of	exponential	growth	is	–		
	

𝑦(𝑡) = 𝑦6 ∙ 𝑒01 	
	
Graphical	Representation	
	

𝑦	

𝑡	
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This	graph	represents	one	example	of	the	family	of	curves,	of	the	final	
exponential	model	found.	It	shows	one	example	of	different	values	for	the	
constants	𝑦6	and	𝑘.	
	
However,	one	problem	with	this	model,	for	simulating	the	rate	of	growth	of	
population/disease	or	the	spread	of	a	rumor	is	evident	when	compared	to	an	
actual	graph	of	the	growth	of	population	reproduced	below.	

	
1According	to	the	rate	expression	89

81
= 𝑘 ∙ 𝑦	that	was	used	to	derive	the	

exponential	model	for	population	growth,	the	rate	of	growth	is	constant.	It	may	
also	be	expected	to	increase.	However,	according	to	the	graph	above,	provided	
by	the	U.S.	Census	Bureau,	is	that	even	though	the	population	continues	to	grow,	
the	rate	of	this	growth	has	actually	been	decreasing	in	the	last	50	years.	The	
exponential	model	however,	does	not	evaluate	this	decrease.	This	can	be	seen	by	
the	graphical	representation	of	family	of	curves	of	the	exponential	model,	where	
with	time,	the	value	of	occurrences	will	continue	increasing	to	infinity.	
	
But	actual	data	suggests	that	rate	should	decrease,	eventually	even	reaching	
zero,	causing	the	curve	to	attain	a	maximum	value	also	known	as	the	barrier	
value	or	carrying	capacity.	
	

																																																								
1	"Population Growth Rate." U.S. Census Bureau. US Government Organization, n.d. Web. 4 Dec. 
2013. <http://b.static.trunity.net/files/118301_118400/118325/620px-Figure_1_long-
term_population_growth.JPG>. 
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This	is	the	main	problem	with	the	exponential	model,	which	is	corrected	by	the	
logistic	growth	model.	
	

Logistic	Growth	Model	
	
This	model	is	similar	to	the	model	of	exponential	growth,	however,	takes	into	
account	the	maximum	value	that	occurrences	can	attain,	for	example	population,	
because	it	is	only	logical	for	example,	that	if	a	disease	starts	to	spread,	it	cannot	
spread	to	an	infinite	value.	It	is	limited	by	a	certain	number,	for	example,	in	this	
case	the	number	of	humans.	The	number	of	humans	infected	by	the	disease	
cannot	be	greater	than	the	total	population	itself	(something	that	would	be	
possible	under	the	exponential	model)	
	
Hence	while	the	rate	of	growth	of	the	exponential	model	was	
	

𝑑𝑦
𝑑𝑡exp.

= 𝑘 ∙ 𝑦	

	
The	equation	can	be	limited	to	a	maximum	value	of	𝑀	by	multiplying	the	rate	of	
exponential	growth,	by	the	fraction	of	the	variable	𝑦	that	has	not	been	affected.	
For	example,	following	the	analogy	above,	the	fraction	of	the	people	not	yet	
affected	by	the	disease.	This	is	logical,	because	it	would	show	that	at	the	end,	
when	carrying	capacity	is	reached,	the	rate	of	growth	would	tend	towards	zero.	
(Further	elaborated	with	graphical	representation	of	this	model).	Hence,	the	rate	
of	growth	of	a	disease,	by	this	model	would	be	–		
	

𝑑𝑦
𝑑𝑡 log.

=
𝑑𝑦
𝑑𝑡exp.

∙
𝑀 − 𝑦(𝑡)

𝑀 	

	
𝑑𝑦
𝑑𝑡 log.

= 𝑘 ∙ 𝑦
𝑀 − 𝑦(𝑡)

𝑀 	

	
Again	this	is	only	the	rate	if	growth.	Now,	the	equation	in	terms	of	a	variable	𝑦	
and	time	𝑡	has	to	be	derived	in	order	to	model	the	growth.	Hence,	by	separating	
variables	and	integrating	–		
	

1

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
	𝑑𝑦 = 𝑘	𝑑𝑡	

	
The	term	on	the	left	hand	side	is	a	rational	polynomial	function	that	cannot	be	
further	simplified.	Hence,	in	its	current	form,	it	is	very	difficult	to	integrate.	
Hence,	it	has	to	be	simplified	and	then	integrated	by	use	of	the	principle	of	
partial	fractions.		
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Simplification	of	the	Complex	Term	
The	complex	denominator	has	to	be	separated	to	two	or	more	terms	that	can	be	
individually	integrated.	This	approach	is	called	integration	by	partial	fractions.	
Hence,	to	divide	the	denominator	into	more	terms	–		

1

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
=
𝐴
𝑦 +

𝐵

1 − 𝑦(𝑡)𝑀
	

	
This	arrangement	allows	the	values	of	𝐴	and	𝐵	to	be	found,	since	the	
denominators	and	numerators	can	be	equated.	The	expression	on	the	right	hand	
side,	if	an	attempt	to	combine	terms	is	made,	will	result	in	the	same	denominator	
as	in	the	left	hand	side.	Hence,	the	numerator	created	in	this	process	should	also	
equate	to	the	numerator	on	the	left	hand	side	–		
	

1

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
=
𝐴 1 − 𝑦(𝑡)𝑀 + 𝐵𝑦

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
	

	
Therefore,	an	attempt	to	find	the	values	of	𝐴	and	𝐵	is	made	by	equating	the	two	
numerators.	
	

1 = 𝐴 1− 𝑦(𝑡)𝑀 +𝐵𝑦 = 𝐴− 𝐴
𝑀+𝐵 𝑦	

	
Hence,	the	coefficient	of	𝑦	should	be	0,	since	there	is	no	term	in	𝑦	on	the	left	hand	
side,	and	the	term	without	𝑦	should	be	equal	to	1.	Therefore,	the	two	equations	
created	by	this	is	-		

1 		𝐴 = 1	

2 	−
𝐴
𝑀 + 𝐵 = 0	

	
By	solving	the	equations	simultaneously	(although	one	equation	directly	lead	to	
an	answer	in	this	case),	the	value	of	𝐴	and	𝐵	is	found	to	be	–		
	

𝐴 = 1, 𝐵 =
1
𝑀	

	
Hence,	these	values	are	finally	replaced	back	into	the	equation	with	partial	
fractions	at	the	start	of	this	page	–		
	

1

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
=
1
𝑦 +

1
𝑀

1 − 𝑦(𝑡)𝑀
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By	this	method,	the	complex	term	has	been	split	into	two	other	terms,	which	can	
be	individually	integrated.	This	final	simplification,	is	finally	inserted	back	into	
the	integration	previously	–		
	

1

𝑦 ∙ 1 − 𝑦(𝑡)𝑀
	𝑑𝑦 = 𝑘	𝑑𝑡	

	

1
𝑦 +

1
𝑀

1 − 𝑦(𝑡)𝑀
	𝑑𝑦 = 𝑘	𝑑𝑡	

	
ln 𝑦 − ln 1 −

𝑦
𝑀 = 𝑘𝑡 + C	

	
As	before,	this	I	further	simplified	to	produce	an	equation	in	𝑦	and	𝑡	where	the	
constant	value	is	found	–		
	

ln
𝑦

1 − 𝑦
𝑀

= 𝑘𝑡 + C	

	
𝑦

1 − 𝑦
𝑀
= C𝑒01 	

	
Finally	analogous	to	the	exponential	model,	at	𝑡 = 0,	the	initial	value	of	𝑦 = 𝑦6.	
By	inserting	these	values	into	the	equation,	the	constant	is	found	and	the	
variables	are	separated	to	derive	the	world-famous	equation	for	logistic	growth	-		
	

𝑦 =
𝑀 ∙ 𝑦6

𝑦6 + (𝑀 − 𝑦6)𝑒D01
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Graphical	Representation	
	

	
In	the	graphs	above,	the	maximum	capacity	of	the	occurrences	𝑀,	assumed	as	
100	is	drawn	with	different	values	of	the	constants	𝑦6	and	𝑘.		
	
These	graphs,	in	my	opinion,	greatly	follow	logic.	Assuming	that	this	is	a	model	
for	the	spread	of	a	disease,	in	the	starting,	the	rate	increases	from	0	to	a	
maximum	value.	This	follows	logic,	as	in	the	starting,	if	only	1	person	is	infected,	
the	rate	of	spread	will	be	relatively	slow,	as	only	the	people	who	meet	the	
infected	will	also	be	infected.	However,	as	more	people	are	infected,	the	rate	
increases	as	the	infected	people	meet	more	non-infected	people.	From	this	
information	alone,	we	could	come	to	the	conclusion	since	more	people	are	being	
infected	per	unit	time,	the	rate	of	spread	of	the	disease	will	continue	to	increase	
(like	the	exponential	model).	
	
However,	there	are	a	maximum	number	of	people.	The	rate	decreases	to	0	as	it	
reaches	this	point,	because	as	people	meet,	there	is	a	lower	probability	that	
either	one	is	infected.	Hence,	as	a	greater	proportion	of	society	is	infected,	the	
probability	that	an	infected	and	non-infected	meeting	occurs	decreases	in	
probability.	This	decrease	is	shown	by	the	rate	decreasing	eventually	to	reach	0,	
when	all	people	have	been	infected.	
	
This	logic	seems	to	lend	reliability	to	this	theory.	

𝑦	

𝑡	

(a)	𝒚𝟎=1	|	𝒌 = 𝟏	

(b)	𝒚𝟎=2	|	𝒌 = 𝟏	
(c)	𝒚𝟎=1	|	𝒌 = 𝟐	
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Real-Life	Modeling	
	

At	first,	I	couldn’t	exactly	understand	from	the	equation	of	the	sigmoid	itself,	
under	what	conditions	of	population	growth	or	spread	of	a	disease	was	the	
equation	derived.	However,	after	reading	the	original	manuscripts	of	Malthus	
(1789)	who	invented	the	exponential	model	which	was	further	modified	by	his	
student,	Pierre-François	Verhulst	(1804{1849),	who	added	the	further	principle	
of	carrying	capacity	and	resistance	to	further	growth.		
	
Verhulst	employed	the	real	values	of	Belgium,	and	created	the	sigmoid	curve.	
This	is	further	applied	to	the	spread	of	a	disease	or	rumour,	particularly	by	the	
research	paper	by	Dr.	D.	Batic	and	Mr.	D.	Dunn,	which	will	be	explored	by	both	
the	computer	simulation	and	the	real-life	experiment.	This	equation	was	created,	
by	considering	that	meetings	of	two	people	take	place,	and	if	anyone	has	the	
disease	or	knows	the	rumour,	it	is	passed	to	the	other	person.	This	is	how	the	
spread	takes	place.	Hence,	this	exact	condition	will	first	be	explored	and	then	
different	conditions,	and	the	affect	of	different	conditions	on	the	sigmoid	curve	of	
occurrence	vs.	time.	
	

Computer	Simulation	
The	computer	simulation	is	a	Java	Program	made	on	BlueJ	(Appendix	1).	I	made	
this	program	myself	as	a	method	of	running	a	model	simulation	that	generates	
the	required	data.		
	
This	Java	program	is	imperative.	Basically,	this	program	creates	an	array,	like	a	
list,	of	0’s	the	size	of	the	carrying	capacity.	Hence,	if	the	carrying	capacity	is	100	
people,	then	this	list	will	have	100	zeros.	Then,	some	of	the	0’s	are	converted	to	
1’s	randomly,	based	on	the	initial	value	input	by	the	user.	This	initial	value	is	the	
initial	number	of	people	out	of	the	100	that	have	the	disease.	Once	these	two	
values	are	input,	there	is	a	list	of	1’s	(those	who	have	he	disease)	and	0’s	(those	
who	do	not	have	the	disease.	
	
After	this,	two	elements	are	compared	randomly,	and	if	any	of	the	two	are	
diseased	(value	of	1),	then	both	will	be	given	a	value	of	1.	Then,	every	number	of	
particular	increments,	also	input	by	the	user	(example	–	30),	the	number	of	1’s	
will	be	output	again	(the	current	number	of	people	who	have	the	disease).	This	
will	be	run	a	number	of	times	input	by	the	user	(example	600).	A	sample	output	
is	given	below.	
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Hence,	every	30	increments,	the	number	of	diseased	people	is	output	by	the	
program	for	up	to	600	runs,	according	to	the	data	entered	into	the	program.	
	
A	graph	was	drawn	for	the	following	parameters	using	the	program.	The	Java	
program	simulated	a	spread	of	disease	amongst	people,	and	output	values	of	
people	infected	after	each	increment.	Sample	of	data	output	by	the	program	is	
given	in	Appendix	2.	
	

	
This	graph	was	created	with	63,765	data	points.	Each	red	point	on	the	
graph	stands	for	1000	actual	data	points’	output	by	the	program.	The	
program	could	output	an	even	greater	number	of	data	points,	if	a	smaller	
increment	was	taken.	Hence,	the	graph	can	be	made	as	accurate	as	
needed/possible.	
	
To	prove	whether	the	curve	follows	the	equation	for	logistic	growth	above,	the	
equation	from	the	graph	is	compared	to	what	the	equation	should	be	according	
to	the	equation	of	logistic	growth.	
	
From	Graph	–		

𝑦 =
150000 ∙ 5

5 + 149999 ∙ 𝑒D6.666QRS	
	
Logistic	Growth	Equation	theoretically	–		
	

𝑦 =
150000 ∙ 5

5 + 149999 ∙ 𝑒D0S	

Carrying	Capacity	–	150000	
Increments	–	50	
Initial	No.	of	People	–	5		
Data	Points	–	63,765	
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As	seen	by	the	similarity	in	the	two	equations,	the	theoretical	equation	is	almost	
congruent	to	the	equation	derived	from	the	computer	simulation.	There	are	
three	conclusions	that	can	be	drawn	from	this	–		
	

1. The	equation	for	logistic	growth	is	in	fact	derived	correctly,	as	a	computer	
simulation	gives	exactly	the	same	result.	This	is	astounding,	because	
mathematicians	created	this	equation	in	the	1800’s	when	computer	
simulation	was	not	available	to	form	or	prove	relationships.	Now,	with	
the	use	of	computer	simulation,	we	can	see	just	how	mathematically	
correct	the	equation	is.	
	

2. The	equation	of	𝑘	found	for	this	curve	is	found	by	comparing	the	two	
equations	above	(the	theoretical	and	actual	equations).	
	

𝑘 = 0.00032	when	𝑀 = 150,000	and	𝑦6 = 5	
	
However,	this	value	of	𝑘	is	only	appropriate	when	the	carrying/maximum	
capacity	is	150,000	and	the	initial	value	of	number	of	people	diseased	is	5.	
	

3. From	the	equation,	it	is	noted	that	logistic	growth	is	only	affected	by	the	
maximum	capacity	and	initial	number	of	occurrences.	These	two	factors	
will	transform	the	curve	and	change	the	value	of	𝑘.	𝑘	Itself	is	a	constant	
and	hence	logically	will	not	affect	the	curve,	but	instead	is	affected	by	
transformations	in	the	curve	
	

4. Since	the	theoretical	equation	of	logistic	curve	is	proved	perfectly	correct	
and	accurate	through	the	computer	simulation,	it	can	be	inferred	that	the	
rate	of	change	equation	used	to	derive	this	expression	is	also	correct.	
Hence,	the	rate	of	growth/decrease	at	any	point	of	the	process	can	be	
pinpointed	by	inserting	the	value	of	the	variable	𝑦	at	that	instance	

	
𝑑𝑦
𝑑𝑡 log.

= 𝑘 ∙ 𝑦 1 −
𝑦 𝑡
𝑀 = 𝟎. 𝟎𝟎𝟎𝟑𝟐 ∙ 𝒚 𝟏 −

𝒚
𝟏𝟓𝟎𝟎𝟎𝟎 	

	
5. As	time	increases	to	an	indefinite	point,	the	value	of	𝑦	and	hence	

occurrences	reaches	the	maximum/carrying	capacity.	
	

lim
1→]

𝑦 = 𝑀	
	

6. The	point	of	inflection,	on	differentiating	the	equation	and	equating	it	to	
0,	is	exactly	half	of	the	carrying	capacity.	This	is	very	interesting,	as	this	
means	that	the	maximum	rate	of	spread	of	a	disease	will	occur	when	
exactly	half	the	population	has	it.	After	that	it	will	start	decreasing	again.	
	

max
6^1_]

𝑑𝑦
𝑑𝑥 =

𝑀
2 	
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Transformations	of	the	Logistic	Curve	
	
According	to	the	3rd	conclusion	drawn	above,	the	affect	of	the	two	factors	that	
affect	the	logistic	curve	is	explored,	for	complete	understanding	of	logistic	curves	
and	how	they	are	transformed.	Hence,	the	factors	that	are	evaluated	are	–		
	
1.	Initial	Number	of	People	
	
For	all	Graphs	Below	(conditions	to	obtain	exact	same	data)	–		
	
Maximum	Capacity	𝑀 = 10,000	
Increments	=	100	
Number	of	Times	Run	=	1,000,000	

	
This	graph	lead	to	another	surprising	conclusion,	in	that	as	the	initial	number	of	
people	is	increased	from	1	to	5	and	finally	10,	the	graph	is	simply	shifted	to	the	
left.	Corresponding	points	on	each	curve	have	exactly	the	same	rate	of	growth	
(gradient	of	this	graph).	There	is	no	change	in	gradient,	but	the	graphs	are	
simply	translated	horizontally.	
	
This	also	makes	logical	sense,	since	if	the	initial	value	is	5	instead	of	1,	then	from	
the	starting	itself,	there	is	a	greater	probability	and	hence	rate	of	spread	of	the	
disease.	At	some	point,	when	the	initial	condition	is	1,	it	also	becomes	5	and	from	
there	it	follows	the	exact	same	path	as	when	the	initial	condition	is	5.	
	
Also,	from	the	graph,	it	is	concluded	that	a	change	in	the	initial	number	of	people	
will	lead	to	a	constant	transformation.	For	example,	the	transformation	between	

Initial	No.	of	People	–	1		
Data	Points	–	2027	

Initial	No.	of	People	–	5		
Data	Points	–	1876	

Initial	No.	of	People	–	10		
Data	Points	–	1772	
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1	and	5	will	be	the	same	as	5	to	9	and	so	on.	Hence,	for	every	point	of	initial	
value,	the	horizontal	translation	can	be	quantified.	
	
	
2.	Maximum/Carrying	Capacity	
	
For	all	Graphs	Below	(conditions	to	obtain	exact	same	data)	–		
	
Initial	Number	of	People	𝑦6 = 5	
Increments	=	50	
Number	of	Times	Run	=	1,000,000	
	

	
This	graph	was	very	interesting.	Not	only	was	it	concluded	from	the	previous	
factor	that	changes	in	initial	number	of	occurrences	will	simply	translate	the	
curve,	but	essentially,	the	same	path	in	terms	of	growth	rate	will	be	taken.	
	
In	this	case	too,	it	can	be	seen	that	very	similar	paths	are	taken	between	curves.	
When	the	carrying	capacity	is	increased	from	5000	to	10000,	the	relative	
corresponding	rate	of	logistic	growth	stays	the	same.	In	other	words,	the	rate	
halfway	through	the	blue	curve	is	equal	to	that	of	the	red	curve.	
	
Hence,	the	graph	seems	to	be	only	stretched	upwards	and	sideways,	between	all	
three	curves.	This	is	the	effect	of	change	in	carrying	capacity	with	time.	
	
	
	
	

𝑴 = 𝟓𝟎𝟎𝟎		
Data	Points	–	5064	

𝑴 = 𝟏𝟎𝟎𝟎𝟎		
Data	Points	–	8131	

𝑴 = 𝟏𝟓𝟎𝟎𝟎		
Data	Points	–	11938	
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Conclusion	
	
This	was	an	extremely	interesting	investigation	into	sigmoid	curves	and	logistic	
growth.	This	mathematical	concept	is	important	due	to	its	far-reaching	
consequences,	in	predicting	the	frightening	future	of	the	world,	where	
population	growth	is	concerned.	A	human	link	to	society,	this	logistic	curve	
represents	that	the	population	will	stagnate	in	the	future	and	might	also	start	to	
decrease.	This	is	frightening	because	that	means	that	some	time	in	history,	the	
birth	and	death	rate	will	be	equal.	The	logistic	growth,	represented	by	a	sigmoid	
curve,	also	models	the	spread	of	a	disease.	
	
This	is	perhaps	the	most	important	application,	as	the	rate	at	which	an	outbreak	
of	a	disease	in	the	future	can	be	mathematically	calculated.	Even	in	this	respect,	
the	sigmoid	curve	paints	a	frightening	picture,	showing	how	quickly,	as	more	
people	are	affected,	the	rate	at	which	the	disease	will	spread	will	increase.	But	it	
also	shows	that	towards	the	end,	after	half	way,	the	rate	at	which	the	spread	of	
disease	takes	place	will	actually	begin	to	slow.	This	phenomenon	is	ground	
breaking	and	definitely	extremely	interesting.		
	
From	this	investigation,	the	separate	rates	and	equations	for	both	exponential	
and	logistic	growth	were	derived.	The	preference	of	logistic	growth	over	
exponential	was	explained,	as	logistic	growth	takes	into	account	a	limit	that	
occurrences	can	attain	(since	infinite	number	of	occurrences	in	for	example	
diseases	is	not	only	not	possible	but	also	useless).	Then,	by	use	of	computer	
simulation,	the	theoretical	derivation	of	logistic	growth	was	proved.	Hence,	the	
aim	was	realized.	A	further	investigation	was	carried	out	by	use	of	the	computer	
simulation,	as	to	the	effects	of	the	maximum	capacity	and	initial	occurrences	on	
the	curve.	
	
Hence,	overall,	through	this	investigation,	I	learnt	exactly	how	to	construct	and	
model	situations	to	a	logistic	curve,	in	order	to	make	predictions	based	on	its	
future	rates	and	values.	It	was	an	exciting	journey	to	drill	down	to	how	these	
curves	are	created,	modified	and	interpreted.	
	
The	computer	program	was	prefect	in	aiding	this	investigation	into	mathematics	
and	the	true	power	of	computation,	in	its	ability	to	carry	out	a	process	millions	of	
times	in	matter	of	seconds,	was	realized.	Computational	processing	power	
hugely	complemented	mathematics,	and	allowed	to	also	derive	the	equation	of	
the	logistic	curve	without	using	calculus	and	logic	as	used	primarily.	
	
I	am	left	with	a	desire	to	further	perfect	this	logistic	model	by	taking	into	account	
the	many	other	factors	that	affect	the	variable	𝑦	with	time,	not	just	the	maximum	
capacity	and	initial	occurrence	value.	A	further	investigation	could	be	carried	out	
to	include	factors	that	are	included	in	F.J.Richards	and	J.A.Nelder	form	of	logistic	
growth.	They	modified	and	adapted	the	curve	and	added	further	factors	to	it,	in	
order	to	be	able	to	map	biological	systems	mathematically.	
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Appendix	1	
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Appendix	2	
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46	 1	 6	 15	 6	 6	 7	 15	 5	 5	
47	 1	 6	 16	 6	 6	 7	 16	 5	 5	
48	 1	 6	 17	 6	 6	 7	 16	 5	 5	
49	 1	 6	 17	 6	 6	 7	 16	 5	 5	
50	 1	 6	 17	 6	 6	 7	 16	 5	 5	
51	 1	 6	 17	 6	 6	 7	 16	 5	 5	
52	 1	 6	 18	 6	 6	 7	 16	 5	 5	
53	 1	 6	 18	 6	 6	 7	 16	 5	 5	
54	 1	 6	 19	 6	 6	 7	 16	 5	 5	
55	 1	 6	 19	 6	 6	 9	 16	 5	 5	
56	 1	 6	 19	 6	 6	 9	 16	 5	 5	
57	 1	 6	 19	 6	 6	 10	 17	 5	 5	
58	 1	 6	 20	 6	 6	 10	 17	 5	 5	
59	 1	 6	 21	 6	 6	 10	 18	 5	 5	
60	 1	 6	 21	 6	 6	 10	 18	 5	 5	
61	 1	 6	 22	 6	 6	 10	 18	 5	 5	
62	 1	 6	 22	 6	 6	 10	 18	 5	 5	
63	 1	 6	 23	 6	 6	 11	 18	 5	 5	
64	 1	 6	 24	 6	 6	 11	 19	 5	 5	
65	 1	 6	 26	 6	 6	 11	 19	 5	 5	
66	 1	 6	 26	 6	 6	 11	 19	 5	 5	
67	 1	 6	 26	 6	 6	 12	 20	 5	 5	
68	 1	 6	 26	 6	 6	 12	 20	 5	 5	
69	 1	 6	 26	 6	 7	 12	 20	 5	 5	
70	 1	 7	 26	 6	 7	 12	 20	 6	 5	
71	 1	 7	 26	 7	 7	 12	 20	 6	 5	
72	 1	 7	 26	 7	 7	 12	 20	 6	 5	
73	 1	 7	 26	 7	 7	 12	 20	 6	 5	
74	 1	 7	 26	 7	 7	 12	 20	 6	 5	
75	 1	 7	 26	 7	 7	 12	 20	 6	 5	
76	 1	 7	 27	 7	 7	 12	 20	 6	 5	
77	 1	 7	 27	 7	 7	 12	 20	 6	 5	
78	 1	 7	 27	 8	 7	 12	 20	 6	 5	
79	 1	 7	 27	 8	 7	 12	 21	 6	 5	
80	 1	 7	 27	 8	 7	 12	 21	 6	 5	
81	 1	 7	 27	 8	 7	 12	 23	 6	 5	
82	 1	 7	 27	 8	 7	 12	 23	 6	 5	
83	 1	 7	 28	 8	 7	 12	 24	 6	 5	
84	 1	 7	 29	 8	 7	 12	 24	 6	 5	
85	 1	 7	 29	 8	 8	 12	 24	 6	 5	
86	 1	 8	 29	 8	 8	 12	 24	 6	 5	
87	 1	 8	 29	 8	 9	 12	 25	 6	 5	
88	 1	 9	 29	 8	 9	 12	 25	 6	 5	
89	 1	 9	 29	 8	 9	 12	 25	 6	 5	
90	 1	 9	 29	 8	 9	 12	 25	 6	 5	
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The	tables	above	are	a	sample	of	the	data	collected.	The	program	would	output	
as	much	data	as	the	increments	allowed.	The	lower	the	increment	values,	the	
more	precise	and	accurate	data	was	generated.	The	most	accurate	graph	created	
above	is	the	first	graph	featuring	almost	65,000	data	points.	This	translates	to	
65,000	rows	of	data	on	excel.	
	
Hence,	the	methods	used	in	this	investigative	task	lead	to	accurate	and	precise	
conclusions	and	hence,	computer	simulation	and	programming	greatly	
benefitted	this	endeavor.		
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